提出用于规则前件学习的中心点交叉涌现的大间隔贝叶斯模糊聚类(CECLM-BFC)算法.考虑不同样本间聚类中心的排斥作用使得聚类中心间距最大化,并采用粒子滤波方法在不同类别样本中交替执行,自动求解出最优聚类结果,包括聚类数、模糊隶属度和聚类中心.在模糊规则后件参数学习上使用分类面大间隔的策略,以MA型模糊系统为研究对象构造具有强解释性的贝叶斯MA型模糊系统(BMA-FS).实验结果表明,BMA-FS能够取得令人满意的分类性能,且模糊规则具有高度的解释性.