当手臂操作与脑电控制被同时应用到水下机器人操作中,且操作人员处于不同作业状态时,针对使用单一脑电信号分类器无法获得较为理想的控制意图识别准确率问题,提出使用组合分类器选取分类结果和根据实际作业情况的特殊性修正分类结果的方法来提升识别准确率.首先,使用Fisher判别方法分别对无手臂操作和存在手臂操作产生的数据进行训练,得到两种作业状态下的分类器;其次,将两分类器进行组合并使用曲线拟合的方式确定用来判定分类结果的基准距离差值(该差值的选取考虑了个体差异);再次,根据实际作业情况的特殊性使用距离修正函数对距离差值进行修正;最后,通过比较基准距离差值与修正后距离差值的大小来确定最终分类结果.为了验证