场感知分解机模型FFM能够有效解决高维数据特征组合的稀疏问题且具有较高的预测准确度和计算效率,广泛应用于推荐系统领域.FFM在建模时没有考虑时间动态性因素,而真实场景中部分特征值会随着时间发生变化,并在不同时间段对预测影响程度不同.鉴于此,提出一种基于时间动态性的场感知分解机模型tFFM.该模型考虑两类时间动态性:偏置动态性和特征动态性.前者从用户行为和物品流行趋势变化角度分别进行动态建模,并基于时间窗口技术设置不同粒度的时间因子;后者将特征细分为随时间变化的动态特征和保持稳定的静态特征,采用ReLU激活函数建立时间函数.采用统一特征编码方式,并设计一种样本数据生成和存取策略,能够大幅降低模型