为了解决目标在复杂环境下表观变化引起的跟踪漂移问题,提出一种基于多特征融合与分类器在线学习的目标跟踪算法.该算法利用不同表观特征训练子分类器,通过构建损失函数求得各子分类器可信度,进而加权融合子预测结果,得到当前帧最佳目标状态估计;同时,依据最近-最远边界原则和协同训练理论粗更新训练样本集,并通过精选择准则得到更具代表性的训练样本集,实现子分类器自适应更新.实验结果表明,所提出的算法在多种典型测试场景中都能取得较鲁棒的跟踪效果.