pytorch task05 卷积神经网络 文章目录pytorch task05 卷积神经网络1.卷积神经网络基础1.1二维卷积层1.2填充和步幅1.3多输入通道和多输出通道1.4卷积层与全连接层的对比1.5池化2 经典模型LeNet-5AlexNetVGGGoogLeNet (Inception)ResNet退化问题残差网络的解决办法 1.卷积神经网络基础 1.1二维卷积层 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,