Wiener模型是一种典型的模块化非线性模型,广泛应用于工业过程控制领域.由于其结构的非线性,参数辨识无法直接得到解析解.为此,将Wiener模型的参数估计转化为带约束的非线性优化问题,以头脑风暴优化(BSO)算法并行搜索该问题的最优解,并以搜索过程中的反馈信息调整BSO算法的变异过程,以改进算法的收敛速度和辨识精度.数值仿真和工业数据验证了所提算法的有效性.