自动调制识别在认知无线电、智能解调器、电子侦察等各种民用及军事应用中扮演重要角色。自动调制识别属于分类问题,常见的方法有KNN、DT、SVM、CNN。为了提高自动调制识别的准确度,基于GNU Radio生成20种信噪比8种调制类型的IQ数据集,训练深度神经网络模型RESNET进行分类测试。实验结果显示自动调制识别的分类准确度提高了近12%。证明了RESNET 适用于自动调制识别,可以满足工程需求。