针对基于高斯混合模型的模糊聚类算法对噪声和异常值敏感的问题,利用包含邻域关系的先验概率与Student’s-T分布构建基于空间约束的混合模型,并结合熵规则化项定义模糊聚类目标函数。Student’s-T分布具有重尾的特点,较之高斯分布具有更强的抗噪能力。此外,为了更加有效地平滑噪声,在标号场上利用马尔科夫随机场模型刻画包含像素与其邻域像素相关性的先验概率,并表达为混合模型的权值系数以增强算法的鲁棒性。通过对模拟图像和真实彩色图像分割结果的定性定量分析,验证了提出算法的有效性和可行性。