提出一种相似矩阵迭代修正并聚类算法, 分为偏振定理的谱分离数据和球极平面逆投影的几何分离数据两步. 首先将数据谱分解, 得到低维距离矩阵; 然后投影到双随机矩阵, 隐式进行一次球极平面逆投影, 几何对称分离数据; 最后解算投影后坐标, 得到新相似矩阵. 实验在人工合成数据和自然数据上进行, 结果表明所提出算法修正了数据的相似度, 并获得了正确的聚类个数, 对尺度参数变化有较强的鲁棒性, 聚类性能比修正前有较大提升.