分析以往格上基于身份的全同态加密方案,指出方案效率低的根本原因在于陷门生成和原像采样过程的复杂度过高,为此提出一种新的解决方案。先将新型陷门函数与对偶容错学习(LWE,learning with errors)算法有机结合,构造一种新的格上基于身份的加密方案;再利用特征向量方法转化为格上基于身份的全同态加密方案。对比分析表明,所提方案的陷门生成复杂度显著降低,原像采样复杂度约降低为以往方案的