针对基本粒子群优化算法(PSO) 容易陷入局部最优点和收敛速度较慢的缺点, 提出在PSO 更新过程中加入两类基于正态分布投点的变异操作. 一类变异用来增强局部搜索能力, 另一类变异用来提高发现全局最优点的能力, 避免所有粒子陷入到一个局部最优点的邻域内. 数值结果表明, 所提出算法的全局搜索能力有显著提高, 并且收敛速度更快.