传统的mean-shift 跟踪算法不能跟踪目标的旋转、缩放运动, 且常常因此造成定位不准. 鉴于此, 将尺度不变 特征变换(SIFT) 特征检测融入到mean-shift 跟踪过程, 提出SIFT 特征点的尺度变化与目标的尺度变化成正比, 特征 点主方向变化与目标旋转角度一致, 给出了基于SIFT 特征的自适应目标尺度、方向计算方法, 且利用带方向、可变 带宽的椭圆核改进传统的mean-shift 跟踪方法. 实验表明, 该算法能够较好地跟踪目标的旋转、缩放运动, 定位也更 准确.