在处理有约束多目标问题的进化算法中, 目前普遍采用Deb 教授提出的约束占优的直接支配选择策略. 在约束处理中, 优秀不可行解与优秀可行解同样重要, 但在直接支配选择策略中, 不可行解被选择的几率很小. 针对此问题, 设计一种环境Pareto 支配的选择策略, 并基于此提出用于解决有约束多目标问题的差分进化算法. 对经典测试函数进行仿真计算, 结果表明, 与其他算法相比, 所提出的算法具有更高的收敛性和稳定性.