CNN实现对FashionMNIST图像分类 卷积神经网络相对于全连接神经网络的优势: 参数少 -> 权值共享 因为全连接神经网络输入的图片像素较大, 所以参数较多 而卷积神经网络的参数主要在于核上, 而且核的参数可以共享给其他通道 全连接神经网络会将输入的图片拉直, 这样就会使图片损失原来的效果,从而导致效果不佳 而卷积神经网络不会将图片拉直,用步长去移动核 可以手动选取特征,训练好权重,特征分类效果比全连接神经网络的效果好 CNN过程: conolution层: 实现对feature map局部采样(相似于感受野) pooling层: 增加感受野 dense层: 也就是全连接层 大概思路