基于经验模式分解和极限学习机的铀资源价格预测方法
针对国际铀资源价格预测问题, 提出一种基于经验模式分解(EMD)、相空间重构(PSR) 和极限学习机(ELM) 的非线性组合预测方法. 首先通过EMD分解, 将原始价格序列分解为若干固有模态分量(IMF), 按频率高低将各IMF 分组叠加成3 个新序列; 然后在重构相空间的基础上构建不同的ELM模型, 分别对各IMF 序列进行预测; 最后对预测结果进行合成. 将该方法应用于实际铀资源价格预测, 并与径向基神经网络(RBF) 方法及单独ELM方法进行比较, 仿真结果表明该方法预测精度有明显的提高.
暂无评论