针对传统多目标概率假设密度滤波(PHD) 器在噪声先验统计未知或不准确时滤波精度下降甚至丢失目标的问题, 设计一种自适应多模型粒子PHD(MMPHD) 滤波算法. 该算法利用多模型近似思想, 推导出一种多模型概率假设密度估计器, 不仅能估计多目标状态, 而且能实时估计未知且时变的噪声参数, 并采用蒙特卡罗方法给出了MMPHD闭集解. 仿真实例表明, 所提出的算法具有应对噪声变化的自适应能力, 可有效提高目标跟踪精度.