针对狼群算法求解复杂函数时容易陷入局部极值、计算耗费大、学习能力差等局限性, 提出一种狼群智能算法. 首先, 通过构建智能猎杀行为提高算法自适应学习能力, 降低算法的计算耗费, 构建双高斯函数更新法以增强算法全局搜索能力; 然后, 运用马尔科夫过程证明狼群智能算法的收敛性; 最后, 对多种典型测试函数进行仿真实验并与多种智能算法进行对比分析. 实验结果表明, 所提出算法具有全局收敛性强、计算耗费低、寻优精度高等优势.