针对量测噪声较小的环境下传统滤波算法容易出现偏差增大的实际问题, 基于高斯近似原理, 提出一种基于高斯似然近似的球面径向积分滤波(SRGLAF) 算法. 为进一步解决量测未知环境下的状态估计问题, 充分结合CKF 等确定性采样型滤波算法和SRGLAF 的优势, 设计一种基于高斯似然近似的自适应球面径向积分滤波(ASRGLAF) 算法. 仿真结果表明: SRGLAF 能够提高量测噪声较小环境下的估计精度, 而在量测噪声未知环境中, ASRGLAF 能够有效地进行状态估计, 具有明显的滤波优势.