多源信息融合故障诊断方法可以有效提高设备故障的确诊率,但同时需要使用由不同传感器获取的多种故障特征数据.此时若将所有特征的数据用于诊断,则计算量过大,诊断的实时性差.对此,将证据理论与粗糙集相结合,提出基于信度区间的属性约简定理及相应的故障特征(属性)约简方法,力图利用约简后的重要特征进行快速诊断.利用随机模糊变量和K均值对特征数据进行离散化处理,通过压缩二进制矩阵获取核属性,再将属性的信度区间大小作为迭代约简过程中属性的选取标准,向核属性中添加重要属性,最终获得属性约简结果.最后进行电机转子的特征融合诊断实验,通过与经典的粗糙集简约方法对比验证所提出方法的有效性.