卷积神经网络基础 二维卷积层 填充和步幅 我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。 填充 公式: 总的计算公式: 总结: 最后一个公式相比前一个公式没有加1的操作,乍一看公式不同(即什么时候加1什么时候不加1)其时,对第二个公式分解一下,即可归纳出什么时候都需要加1的操作。这样便于记忆) 多输入通道和多输出通道¶ 代码: print(X.shape) conv2d = nn.Conv2d(in_channels=2, out_channels=3, kernel_size=(3, 5), stride=1, padding=(1, 2