在C-3D卷积神经网络模型基础上,提出了一种三维可变形卷积神经网络以实现肺结节的检测。在模型的主体结构上,采用了三维可变形卷积和三维可变形池化的操作,解决了传统的方块卷积与池化在应对不规则的肺结节时,无法高效率地收集到肺结节像素点的问题。在模型的输入上,通过调整三维卷积神经网络的输入,实现了卷积神经网络对样本图片的32×32×32像素逐步扫描和识别,在扫描识别的同时进行定位,解决了肺结节定位问题。在模型的输出上,借鉴了全卷积神经网络的思想,将C-3D网络的第一层全连接层改为卷积层,解决训练时内存会溢出的问题。在模型参数上,提出了三种不同学习率和三种优化函数进行精确的实验对比,绘制了不同学习率和