针对图像和视频中多人姿态估计存在人体边界框定位不准确、困难关键点检测精度有待提高等问题,设计了一套基于自顶向下框架的实时多人姿态估计模型。首先将深度可分离卷积加入目标检测算法中,提高人体检测器运行速度;然后基于特征金字塔网络结合上下文语义信息,采用在线难例挖掘算法解决困难关键点检测精度低的问题;最后结合空间变换网络与姿态相似度计算,剔除冗余姿态,改善边界框定位准确性。本文提出模型在2017MS COCO Test-dev数据集上的平均检测精度比Mask R-CNN模型提升了14.84%,比RMPE模型提升了2.43%,帧频达到 22 frame/s。