近年来,光学成像技术已经由传统的强度、彩色成像发展进入计算光学成像时代。计算光学成像基于几何光学、波动光学等理论对场景目标经光学系统成像再到探测器采样这一完整图像生成过程建立精确的正向数学模型,再求解该正向成像模型所对应的“逆问题”,以计算重构的方式来获得场景目标的高质量图像或者传统技术无法直接获得的相位、光谱、偏振、光场、相干度、折射率、三维形貌等高维度物理信息。然而,计算成像系统的实际成像性能也同样极大程度地受限于“正向数学模型的准确性”以及“逆向重构算法的可靠性”,实际成像物理过程的不可预见性与高维病态逆问题求解的复杂性已成为这一领域进一步发展的瓶颈问题。近年来,人工智能与深度学习技术的