为了进一步提高乳腺肿瘤分割的精确度,提出了一种基于简单线性迭代聚类(SLIC)和梯度矢量流(GVF)Snake算法相结合的乳腺肿瘤分割模型。该模型首先对图像进行预处理以减少冗余信息提高后续的分割效率;其次结合图像的纹理特征提出了一种自适应K值方法,并对图像利用SLIC算法进行粗分割,描绘出乳腺肿块的初始轮廓;最后,利用GVF Snake算法加大对轮廓边缘信息的捕捉范围,进行细分割得到分割结果图。实验验证表明,该分割模型可以有效地提高分割效率和准确度,在一定程度上优于传统的分割算法,得到了较为理想的分割结果。