为了更好地实现图像的去噪效果,提出了一种改进的基于K-SVD(Singular Value Decomposition)字典学习的图像去噪算法。首先,将输入的含噪信号进行K均值聚类分解,将得到的图像块进行稀疏贝叶斯学习和噪声的更新,当迭代到一定次数时继续使用正交匹配追踪(Orthogonal Matching Pursuit, OMP)算法对图像块进行稀疏编码,然后在完成稀疏编码的基础上通过奇异值分解来逐列更新字典,反复迭代至得到过完备字典以实现稀疏表示,最后对处理过的图像进行重构,得到去噪后的图像。实验结果表明,本文的改进算法相对于传统的K-SVD字典的图像去噪能够在保留图像边缘和细节信息的