针对复杂工业过程样本集中的类不平衡、样本标注代价昂贵和样本孤点的问题, 研究基于委员会投票选择(MQBC) 和代价敏感支持向量机(CS-SVM) 的故障检测方法. 给出未标注样本信息度的定义, 提出改进的委员会投票选择算法. 主动代价敏感学习通过MQBC选择信息度高的未标注样本对其标注并添加到训练集. CS-SVM 将不同类样本的误分类赋予不同的误分类代价, 从而提高CS-SVM 的故障检测率. 最后, 以铜闪速熔炼过程为例,实验结果验证了所提出方法的有效性.