改进灰狼优化算法及其在QR码识别上的应用
针对QR(Quick Response)码在光照变化、污染、破损等情况下识别率低的问题,提出一种多块局部二值模式(MB-LBP)结合改进灰狼优化算法(GWO)优化支持向量机(SVM)的QR码识别算法。首先采用提升小波变换分离出图像的高低频分量,将二级低频和水平高频分量分成互不重叠的子块,分别提取每个子块的MB-LBP特征并融合;然后运用主成分分析(PCA)对样本集进行特征降维;最后采用SVM算法对QR码数据建立分类模型。为进一步提高分类精度,在标准GWO基础上引入基于对数函数的非线性收敛因子提升其寻优性能,并使用改进GWO优化SVM模型。实验根据不同高低频结合方式、SVM优化算法对识别性能进行
暂无评论