基于离散余弦变换和深度网络的地貌图像分类
在未知环境中,无人机(UAV)着陆地貌的自动识别和分类有着极其重要的研究意义,传统的自然场景分类利用的是中层和底层特征信息,但是无人机着陆地貌图像场景复杂、信息丰富,需要较准确的高层语义特征表达。提出了一种基于离散余弦变换(DCT)和深度网络的地貌图像分类方法。首先将离散余弦变换能量集中的优势引入到卷积神经网络(CNN)的高效特征表达中,以降低维度和计算复杂度;然后根据地貌图像特点构建了14层的特征学习网络,并改进了卷积神经网络结构;最后将得到的深层特征输入到支持向量机(SVM)中,快速准确地完成图像分类。实验结果表明,该算法降低了数据冗余,使训练时间大幅度减少,可以自动地学习高层语义特征;所
暂无评论