本文于infoq,介绍了传统的hash算法,卷积神经网络计算图片相似度,基于局部不变特征的相似度匹配算法, 趋势展望等。电商场景中,卖家为获取流量,常常出现重复铺货现象,当用户发布上传图像或视频时,在客户端进行图像特征提取和指纹生成,再将其上传至云端指纹库对比后,找出相似图片,杜绝重复铺货造成的计算及存储资源浪费。该方法基于图像相似度计算,可广泛应用于安全、版权保护、电商等领域。端上的图像相似度计算与传统图像相似度计算相比,对计算复杂度及检索效率有更高的要求。本文通过设计实验,对比三类图像相似度计算方法:感知哈
暂无评论