深度学习自编码器即Java实现 ​ 自编码(Auto-Encode)是一种无监督学习,不给定标签向量,它可以借助神经网络来实现,将神经网络的输入和输出进行对比来不断地重构误差,修正神经网络中各层节点的权值和偏量,使得网络的输出不断地逼近输入,理想状态下可以使得输出等于输入,而神经网络隐含层中的某一层(例如隐含层最中间的那一层)的输出值可以作为已编码数据进行使用。 ​ 自编码器的训练过程是一种对原数据特征的提取,通过不断地训练数据从而得到蕴含原数据主要特征的目标数据,目标数据在维度上是低于原数据的。 自编码神经网络的实现方式一 ​ 建立多层神经网络时,设定多层隐含层的最中间那一层的节点数为