卷积神经网络基础;leNet;卷积神经网络进阶卷积神经网络基础二位互相关运算二维卷积层互相关运算与卷积运算特征图与感受野填充和步幅填充:在输入的高宽两侧填充元素,通常填充0。步幅:卷积核在输入数组上每次滑动的行数列数。多输入通道和多输出通道1×11×11×1卷积层池化LeNetLeNet模型卷积神经网络进阶AlexNet使用重复元素的网络(VGG)网络中的网络(NIN)GoogleNet 卷积神经网络基础 介绍的是最常见的二维卷积层,常用于处理图像数据。 二位互相关运算 卷积核数组在输入数组上滑动,如图在第一个位置,两阴影处对应位置相乘,得到输出数组。依次向右,再从开始向下滑动,得到四个数字