交通标志识别在驾驶辅助系统和交通安全方面发挥着重要作用。卷积神经网络在计算机视觉任务上取得了重大的突破,并在交通标志检测与识别方面取得了巨大的成功。然而,现有的识别方法通常达不到实时识别的效果。因此,提出一种改进卷积神经网络交通标志识别方法,通过加入初始模块,扩展网络结构和提出新的损失函数等多种方法来解决原始模型不擅于检测小目标的问题。在德国交通标志数据集上的仿真结果表明,与现有技术相比,提出的方法能够获得更高的检测速率,每张图片的处理时间仅为0.015 s。