针对传统跟踪方法难以实时准确适应目标尺度变化这一问题, 基于核相关滤波跟踪框并采用尺度估计方法, 提出一种自适应尺度的目标跟踪算法。对正则化最小二乘分类器进行求解, 获得滤波模板, 并对候选样本进行检测, 估计出目标的位置; 利用尺度估计方法, 在已确定目标位置处根据前一帧目标的大小对当前帧目标尺度进行检测, 由最大的响应值确定当前帧目标的尺度; 根据遮挡检测机制, 在线更新目标和尺度模型参数。实验结果表明, 所提出的算法与其他跟踪算法中的最优者相比, 距离精度提高了17.12%, 成功率提高了10.77%; 在目标发生背景干扰、严重遮挡以及在光照、姿态和尺度变化等复杂场景下, 该算法仍具有较