Python机器学习 小型机器学习项目,以了解核心概念(顺序:从最早到最新) 使用带有新闻组20数据集的潜在Dirichlet分配进行主题建模,并使用Python和Scikit-Learn实现 在MNIST数据集上实现了用Keras构建的简单神经网络 使用线性回归的Google股票价格预测 实现了一个简单的社交网络来学习Python基础 实施Naives Bayes分类器以过滤SpamAssasin公共语料库上的垃圾邮件 使用Keras和Scikit-Learn的银行数据集的客户流失预测模型 从零开始实施随机森林,并在UCI存储库的Sonar数据集上建立分类器 示例数据集上Python中的简