SEGAN:语音增强生成对抗网络 介绍 这是SEGAN项目的存储库。 我们的原始文件可以在找到,并且测试样本可以。 在这项工作中,采用了一种对抗性生成方法,以一种完全卷积的体系结构来进行语音增强(即从损坏的语音信号中去除噪声),如下所示: 该模型处理处于不同SNR的许多噪声条件下的原始语音波形(训练时为40,测试时为20)。 它还可以对来自混合在同一结构中的许多说话者的语音特征进行建模(无需任何身份监督),这使得生成的结构在噪声和说话者维度上具有普遍性。 所有项目都是使用TensorFlow开发的。 关于GAN的定义和部署,有两个很好的参考资料库: GAN:实施改进以更稳定的方式训练G