针对机载全波形数据,提出了一种基于随机森林法的点云分类算法。通过全波形分解获得振幅,回波次数以及回波宽度,结合提出的特征提取方法,构建一个多维特征向量并进行特征选择,利用随机森林法将激光点云分为植被,地面以及建筑物三类。通过对比分析随机森林和支持向量机两种分类方法,实验结果表明所提取的特征在随机森林分类中具有良好的稳定性以及高效性,能够在城市分类应用中取得较好的分类效果。