基于激光回波时频图纹理特征的飞机目标分类方法
为实现直升机、螺旋桨飞机和喷气式飞机的激光遥感探测分类,研究了基于时频图的飞机目标微动纹理特征提取算法。根据旋翼微多普勒模型仿真三类飞机旋转部件回波信号,将平滑伪魏格纳-维利变换得到的时频分布生成灰度图像。采用大津(OTSU)法结合灰度拉伸对图像进行阈值去噪处理,提取目标灰度共生矩阵(GLCM)特征以及Tamura特征,并针对时频图差异进行特征优化,最后使用支持向量机(SVM)实现飞机目标分类。仿真数据分类结果表明:GLCM特征对噪声表现敏感,经所提方法对时频图去噪,信噪比(SNR)RSN=0 dB时的分类正确率可达96.4%。Tamura特征在高信噪比条件下分类正确率较高,但当RSN<
暂无评论