挥发性盐基氮(TVB-N)含量是评价肉制品新鲜度的重要指标。尝试采用遗传联合区间偏最小二乘(GA-Si-PLS)从高光谱数据之光谱信息中筛选出最优波长。再提取各波长所对应的灰度图像的纹理特征,纹理特征变量经主成分优化后,作为输入层,运用反向传播神经网络(BP-ANN)构建鸡肉的TVB-N含量的定量模型。实验表明,模型对训练集和预测集的均方根误差分别6.61和9.84,相关系数分别为0.9054和0.8030。研究表明可以利用高光谱中的图像信息对鸡肉TVB-N含量进行快速无损检测。