Webshell是一种Web端的恶意脚本文件。它通常由攻击者上传至目标服务器来达成其非法的访问控制的目的。现有Webshell检测方法存在诸多不足,如单一的网络流量行为、简易被绕过的签名比对、单一的正则匹配等。针对上述不足之处,基于PHP语言的Webshell,提出了一种基于多视角特征融合的Webshell检测方法,首先,提取包括词法特征、句法特征、抽象特征在内的多种特征;其次,利用费舍尔评分对特征进行重要程度的排序与筛选;最后,通过 SVM 建立能有效区分 Webshell 和正常脚本的模型。在大规模的实验中,模型对Webshell和正常样本的最终分类精度达到了92.1%。