针对红外图像中由复杂背景和目标多形态带来的单帧检测暗弱小目标比较困难的问题,提出了一种先进行阈值分割粗提取,后进行多点信噪比精检测的算法。在粗提取阶段,提出了改进的基于稳健主成分分析(RPCA)的阈值分割算法,利用邻域稀疏度均值与整幅稀疏图像均值的比值进行阈值分割,从而进一步剔除孤立噪点和背景云层边缘的杂波。在精检测阶段,提出了基于统计特性的多点恒虚警检测算法,统计候选点在邻域内每个像元的信噪比,利用虚警率门限和统计数量阈值筛选目标点,从而克服由小目标能量弥散带来的多形态特征问题。实验结果表明,所提算法在复杂背景下的探测率达到95.6%,与利用单像元和邻域像元均值计算信噪比的方法相比,虚警率分