基于多尺度特征和PointNet的LiDAR点云地物分类方法
针对复杂场景下激光雷达测量(LiDAR)点云数据的地物分类问题,提出了一种基于多尺度特征和PointNet的深度神经网络模型,该方法改进了PointNet提取局部特征的能力,实现了复杂场景下LiDAR点云的自动分类。在PointNet网络基础上添加多尺度网络提取点的局部特征,将不同尺度点的局部特征通过全连接层组成一个多维特征,并与PointNet提取的全局特征相结合,返回每个点类的分数以完成点云分类标签。利用Semantic 三维数据集和ISPRS提供的Vaihingen数据集,验证了所提深度神经网络模型。研究结果表明,与其他用于点云分类的神经网络相比,所提算法达到了更高的分类精度。
暂无评论