双维度交叉特征点协同匹配的点云拼接算法
为提高结构光三维重构系统的点云匹配速度及精度,提出二维视图及三维点云交叉特征点协同匹配的方法。首先,通过投影变换及维度映射关系实现待拼接投影图像的归一化,经预处理后提取端点及分叉点作为关键点,对同类点进行三角划分及相似匹配得到初始点集,并将其映射至三维空间。其次,利用kd-tree搜索得到双邻域质心,根据三点构成的三角形相似关系进一步筛选点集。最后,采用四元数法完成粗拼接,进而使用改进的迭代最近点(ICP)算法完成精拼接。实验结果表明,所提算法的匹配准确率达98.16%,匹配用时3s,粗拼接重叠区域的重心距离误差为0.018mm,所提算法对于二维图像视角变换、纹理光滑、光线不均等具有较高的鲁棒
暂无评论