考虑气象因素对负荷的影响,提出了一种模糊支持向量机SVM(Support Vector Machine)的短期负荷预测方法。首先选取预测日前4星期中差异评价函数小于给定经验值的已知日作为相似日学习样本.然后利用隶属度函数对影响负荷特征因素向量的分量进行模糊处理,得到SVM的训练样本集.拟合负荷和影响因素之间的非线性关系。对24点每点建立一个SVM预测模型,采用改进的序列极小优化算法实现对SVM的快速训练。算例数据包括每天的气象数据和24点负荷数据.以最大相对误差和平均误差评价预测结果,表明所提方法简便快速且实用有效。