使用深度学习对食物图像进行分类 源码
使用深度学习对食物图像进行分类 执行摘要 某个图像不仅必须代表一个属性,而且在大多数情况下代表两个以上。 换句话说,可以为单个图像指定多个标题或标签。 这个问题称为多标签分类,用于少数内容检索和场景理解。 对于本研究,使用Keras(带有Tensorflow后端)将多标签分类算法应用于食物图像。 更改了简单的CNN模型,让位于多标签分类。 为了使事情变得容易,特别使用了ResNet50,MobileNet,DenseNet121和Xception等预先训练的CNN模型。 然后,应使用Nanonets多标签分类API对这些结果进行比较。 结果显示,对于Nanonets,F1得分更高,为75.06
文件列表
Classifying-Food-Images-using-Deep-Learning-master.zip
(预估有个59文件)
Classifying-Food-Images-using-Deep-Learning-master
.ipynb_checkpoints
DL Final Project Jupyter Notebook-checkpoint.ipynb
501KB
templates
index.html
9KB
requirements.txt
2KB
assets
js
main.js
6KB
.DS_Store
6KB
暂无评论