点云配准是三维点云信息处理中的重要问题。传统点云配准方法计算量大,不利于实时计算与移动计算。针对传统点云配准方法存在的问题,提出了一种利用卷积神经网络进行点云配准的方法。首先计算点云的深度图像,利用卷积神经网络提取深度图像对的特征差,将深度图像对的特征差作为全连接网络的输入并计算点云配准参数,迭代地执行上述操作直至配准误差小于可接受阈值。实验结果表明,相比传统的点云配准方法,基于卷积神经网络的点云配准方法具有所需计算量小、配准效率高、对噪声点和异常点不敏感的优点。