在含有动态干扰因素的复杂背景下提取前景目标时,现有的视觉背景前景目标提取算法容易出现鬼影、误检等问题,因此提出了一种改进的基于视觉背景的前景目标提取算法。首先,根据像素点的时间序列以及位置特征,计算像素点的匹配概率、匹配程度以及亮度信息。其次,实时更新与当前复杂背景吻合的背景模型,同时对背景模型进行初始化。最后,对CDnet 2014数据集中各类复杂背景下的视频进行测试,并与经典的高斯混合模型、视觉背景提取(ViBe)算法、改进的ViBe算法进行对比。实验结果表明,本算法在各类复杂背景下能高效去除鬼影的影响,且提取结果精度较高,极大降低了提取结果的错分率和漏检率,提高了复杂背景下算法的高效性与