针对藻类荧光光谱解析中常见的信息冗余和光谱相关性问题,基于偏最小二乘(PLS)的方法,提出了区间蒙特卡罗偏最小二乘(IMC-PLS)方法,有效地解决了特征波长的选取问题。根据特征色素荧光峰位置预选出特征区域,综合利用了此特征区域内单个波段的信息和不同的随机波段组合对于模型的贡献,基于荧光光谱的三线性特点,联合了发射波长和激发波长的信息。研究结果表明,与无信息变量消除算法(UVE)相比,IMC-PLS反演4种藻类浓度得到的平均相对标准偏差分别降低了0%、34.3%、55.9%、30.5%,选择出的特征波长数和运算时间分别减少了80.1%、81.3%,IMC-PLS方法有效地解决了实时监测问题,也为离散三维荧光光谱仪器的研制提供了理论支持。