目前的在线潜在狄利克雷分布模型(LDA)算法大多是基于固定的词汇表,在实际应用中经常会出现词汇表和处理的语料不匹配的情况,影响了模型的实用性。针对这个现象,在置信传播算法(BP)的框架下,使主题单词分布服从狄利克雷过程,重新推导公式,使得词汇表在模型运行之前为空,并且在处理时不断向词汇表中增加发现的新词。实验证明,这种新的基于动态词汇表的算法不仅使得词汇表与语料的贴合度更高,而且使其在混淆度以及互信息指数这两个指标上能够比基于固定词汇表的LDA模型表现得更加优越。