Group movie recommender system:基于矩阵分解的电影推荐系统 源码
团体电影推荐系统 在这个项目中,我们为一组用户创建了一个基于矩阵分解的推荐系统。 我们首先对用户电影评级矩阵进行基于随机梯度的矩阵分解,以计算用户和电影因素。 我们生成3个不同大小的用户组。 小型(3名成员),中型(5名成员)和大型(10名成员),并使用以下方法预测小组评分。 我们尝试了3种不同的方法。 分解后:将分解后的用户因子汇总为组因子 在分解之前(BF):我们将用户的评级汇总到虚拟用户中。 我们通过使用简单的岭回归来计算组因子。 分解前加权(WBF):与BF相同,只是编号不同。 用户观看的电影总数被作为权重。 我们使用加权岭回归方法解决它。 最后,我们评估我们的项目(获得大约80%的精度) 纸 项目基于以下论文: 数据集 数据集: : 视频 视频: : 执行依赖 笔记本可以直接运行。 数据集包含在github仓库中。 同样,可以通过以下方式运行python代码:
文件列表
Group-movie-recommender-system-master.zip
(预估有个17文件)
Group-movie-recommender-system-master
Config.py
2KB
GroupRec.py
15KB
config.conf
549B
Final_Project.ipynb
51KB
Group.py
6KB
res
result.png
45KB
medium_grp.png
28KB
evaluation_metrics.png
101KB
暂无评论