Wafer_map_pattern_classification_with_MFE_and_CNN:具有MFE和CNN的晶圆图图案分类 源码
晶圆图模式分类 1.数据说明 WM-811K数据集 在实际制造中从46393个批次中收集了811457个晶圆图 172950个晶圆被领域专家标记。 9种缺陷模式类别(中心,甜甜圈,边缘环,边缘局部,局部,随机,近满,划痕) 删除了四个裸片少于100个的异常晶圆图(无图案类) 2.手动特征提取方法 1]特征提取 1)密度特征 晶圆图分为13个区域(4个边缘区域,9个中心区域) 每个区域的缺陷密度用作密度特征 13个提取的特征 2)几何特征 通过噪声过滤提取显着区域 基于最大面积的显着区域,提取六个几何特征周长,面积,短轴长度,长轴长度,坚固性和偏心率 6个提取的特征 3)features功能 通过radon变换创建根据一系列投影创建晶圆图的二维表示 应用三次插值以获得相同数量的行。 根据radon转换的结果和提取的行平均值得出20行 行标准差 每行 40个提取的特征 总共59个
文件列表
Wafer_map_pattern_classification_with_MFE_and_CNN-master.zip
(预估有个7文件)
Wafer_map_pattern_classification_with_MFE_and_CNN-master
classifier.py
3KB
run_model.py
950B
result_process.ipynb
267KB
README.md
5KB
run.sh
124B
preprocess.py
8KB
model.py
2KB
暂无评论